Abstract
1. Intrauterine infection or inflammation is common in cases of preterm birth. Preterm infants are at risk of acute respiratory distress as a result of lung immaturity; evidence of exposure to infection and/or inflammation before birth is associated with a reduced risk of neonatal respiratory distress syndrome (RDS). Experimentally induced intrauterine inflammation or infection in sheep causes a precocious increase in pulmonary surfactant in the preterm lungs that improves preterm lung function, consistent with the reduced risk of RDS in human infants exposed to infection and/or inflammation before birth. 2. The effects of intrauterine inflammation on fetal lung development appear to result from direct action of proinflammatory stimuli within the lungs rather than by systemic signals, such as the classical glucocorticoid-mediated lung maturation pathway. However, paracrine and/or autocrine production and/or metabolism of glucocorticoids in fetal lung tissue may occur as a result of inflammation-induced changes in the expression of 11β-hydroxysteroid dehydrogenase (types 1 and 2). 3. Likely candidates that mediate inflammation-induced surfactant production by the preterm lung include prostaglandin E₂ and/or other arachidonic acid metabolites. Intrauterine inflammation induces the expression of enzymes responsible for prostaglandin production in fetal lung tissue. Inhibition of prostaglandin production prevents, at least in part, the effects of inflammation on fetal lungs. 4. Our experiments are identifying mechanisms of surfactant production by the preterm lungs that may be exploited as novel therapies for preventing respiratory distress in preterm infants. Elucidation of the effects of inflammation on the fetal lungs and other organs will allow more refined approaches to the care of preterm infants exposed to inflammation in utero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical and Experimental Pharmacology and Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.