Abstract

Facilitation by a neighboring woody understory has been suggested as a cost-effective and sustainable way to regenerate oaks. However, concerns about reduced plant growth and quality due to competing neighboring vegetation have hindered implementation. Here we studied competitive effects from herbaceous and woody vegetation on survival, growth, canopy development and stem quality in pedunculate oak (Quercus robur) in an open-field experiment in southern Sweden. Oaks were grown for eight years in four different competition treatments: no competing vegetation, with herbaceous vegetation (mainly grasses), with woody vegetation, and with both herbaceous and woody vegetation. During the first four years, competition had little effect on oak survival. However, after eight growing seasons, survival rates decreased to about 20% for oaks surrounded by woody vegetation, in contrast to oaks grown with only herbaceous vegetation that had a survival rate of near 100%. Competition from herbaceous and woody vegetation both reduced oak stem diameter and height growth, but they affected height growth differently. During the first growing seasons, oaks in the treatment with woody vegetation were able to keep up with the height growth of the surrounding vegetation. Thereafter, height growth stagnated, and after eight growing seasons heights of oaks in the treatment with woody competitors were only 30–39% that of oaks in the treatment without competing vegetation. In contrast, competition from herbaceous vegetation only restricted oak height development marginally. Interspecific competition not only restricted growth and survival but also shifted shoot architecture, resulting in a greater frequency of oaks with straight monopodial stems. Although competition from both herbaceous- and woody vegetation positively affected stem straightness, plots with woody vegetation had a greater proportion (0.42) of oaks with a single straight monopodial stem. Our results demonstrate that the facilitative competitive effects from herbaceous and woody vegetation could be used to control allocation patterns in young oaks, promoting development of tall straight monopodial stems. Considering the observed trade-off between high stem quality and survival, we recommend long-term assessment of this trade-off prior to application in practical forestry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call