Abstract

The study of 2,4,6-trinitrotoluene (TNT) sublimation rates from the bulk surface and a substrate surface have been evaluated quantitatively with both atomic force microscopy and quartz crystal microbalance (QCM) techniques. A first principle theoretical model is proposed, which allows obtaining three critical parameters, bulk sublimation rate, surface interaction potential, and the effective decay length, with no arbitrary parameters. The bulk sublimation rate predicted by the model is quantitatively confirmed by QCM experiments. The isothermal measurements with QCM showed that the sublimation activation energy of bulk TNT is 131 kJ/mol. More importantly, all results were obtained at one atmosphere and near room temperature. Thus, it should have direct impacts on explosive trace detection device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.