Abstract
The optical characterization and chemical vapor sensing properties of 1,7-dibromo-N,N′-(bicyclohexyl)-3,4:9,10-perylene diimide thin film against to organic vapors were discussed in this study by using spin coating, UV–Vis spectroscopy, atomic force microscopy, surface plasmon resonance (SPR) and Quartz Crystal Microbalance (QCM) techniques. The perylene diimide thin films were fabricated with a refractive index values from 1.55 to 1.60 and thicknesses in the range between 15.80 and 26.32 nm using different spin speeds from 1000 to 5000 rpm. In this study, perylene diimide thin film sensor was exposed to dichloromethane, chloroform, carbon tetrachloride, tetrahydrofuran and ethyl acetate vapors by using both SPR and QCM techniques. Also, the swelling behaviors of the perylene diimide thin films prepared at different spin speeds were investigated with respect to dichloromethane vapor at the room temperature by using SPR data. Diffusion coefficients were found to be 11.34 × 10−17 (1000 rpm), 2.56 × 10−17 (3000 rpm) and 0.38 × 10−17 cm2 s−1 (5000 rpm) for dichloromethane vapor by using the Fick’s law of diffusion. It might be proposed that perylene diimide thin film optical chemical sensor element has a good sensitivity and selectivity for the dichloromethane vapor at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Inclusion Phenomena and Macrocyclic Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.