Abstract

Largely because of the lack of detailed microscopic information on the interfacial morphology, most electronic structure calculations on superlattices and quantum wells assume abrupt interfaces. Cross-sectional scanning tunneling microscopy (STM) measurements have now resolved atomic features of segregated interfaces. We fit a layer-by-layer growth model to the observed STM profiles, extracting surface-to-subsurface atomic exchange energies. These are then used to obtain a detailed simulated model of segregated InAs/GaSb superlattices with atomic resolution. Applying pseudopotential calculations to such structures reveals remarkable electronic consequences of segregation, including a blueshift of interband transitions, lowering of polarization anisotropy, and reduction of the amplitude of heavy-hole wave functions at the inverted interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.