Abstract
Effects of initial stresses on the dispersion curves of Lamb and SH waves in multilayered PZT-4/PZT-5A composites are investigated using the polynomial expansion approach. The piezoelectric layers are considered with arbitrary crystal orientations with a result that only Lamb or SH waves may be transmitted. The problem is solved employing the Legendre polynomial approach that poses the advantages of numerically stability and effectiveness over conventional matrix method. The solution is validated by comparing the wave propagation behavior of piezoelectric materials with those reported in literature, and the convergence properties are examined. Numerical results demonstrate that initial stress has profound influences on the guided wave propagation in multilayered PZT-4/PZT-5A laminates. The phase velocity of Lamb and SH waves increases with initial tensile stresses. In addition, the effects of initial stresses rely on the wave mode and thickness of constituent layers and the stacking sequence of the constituent materials. The results are useful for understanding and optimization of new designs for actuator, electromechanical sensor and acoustic wave devices made of PZT-4/PZT-5A composites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have