Abstract

This work investigates the compaction behavior of hydride–dehydride CP-Ti powder from green density/compaction pressure curves. These were obtained through a modification of selected processing conditions, such as variation in compact thickness, the use of internal lubrication, and additions of plasma rotating electrode process powder. A modified Cooper–Eaton equation, which treats the compaction process to be a combination of particle rearrangement (PR) and plastic deformation (PD) mechanisms, was used to simulate the curves. A comparison with aluminum and iron compaction is also carried out in this study. The research indicated that the cold compaction of titanium powder can be separated into two stages: a PR stage (stage I), which occurs at a compacting pressure in the range of 0 to 200 MPa, followed by a further PR stage initiated by PD, when the compaction pressure is in the range of 200 to 1000 MPa. The existence of stage II is due to the low plastic deformability of titanium and low density achieved at the end of stage I.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.