Abstract

AbstractRadar ducting is caused by sharp vertical changes in temperature and, especially, water vapor at the top of the atmospheric boundary layer, both of which are sensitive to variations in the underlying surface conditions, local mesoscale weather, and synoptic weather patterns. High-resolution numerical weather prediction (NWP) models offer an alternative to observation to determine boundary layer (BL) structure and to assess the spatial variability of radar ducts. The benefit of using NWP models for simulating ducting conditions very much depends on the initial state of sea surface temperature (SST) and the model spinup time, both of which have a great impact on BL structure. This study investigates the effects of variation of NWP-model initial conditions and simulation length on the accuracy of simulating the atmosphere’s refractive index over the Wallops Island, Virginia, region, which has pronounced SST variability and complex BL structure. The Met Office Unified Model (MetUM) with horizontal resolution of 4 km (4-km model) was used to simulate the atmospheric environment when observations were made during the Wallops-2000 experiment. Sensitivity tests were conducted in terms of the variability of SST and model spinup time. The evaluation of the model results was focused on low-level moisture, temperature, and surface ducting characteristics including the frequency, strength, and the height of the ducting layer. When provided with more accurate SST and adequate simulation length, the MetUM 4-km model demonstrated an improved ability to predict the observed ducting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call