Abstract

Pyrolysis-coupled gasification-melting is a promising technology as it can dispose of the petrochemical sludge (PS) and recover the leftover energy. Unfortunately, there has been little research investigating the effects of pyrolysis degree on melting characteristics of the pyrolysis residue (PR) and the transformation properties of the heavy metal (HM). In this study, the function of inherent components and disposal temperature were elucidated. The results show that the moisture and light volatile could disperse the melting residue (MR) during gasification-melting treatment, causing different morphology and color of the MR. In addition, as pyrolysis temperature increased, the HMs speciation (e.g. Zn, Cu, and Cr) in the PR was transformed from bioavailable to a stable state, and the yield of PR decreased from 66.8% to 36.5%. The PR produced at 800 °C could decrease about 0.9 ∼ 1.9 potential ecological risk of releasing substances during the subsequent high-temperature gasification-melting owing to its stable HMs state and less char composition. Moreover, the gasification at 1250 °C could realize the safe disposal of the PR. Further increasing the gasification temperature to 1450 °C could not improve the acid-leaching resistance of the HMs, although the apparent concentration of C and the acid dissolution proportion of slag decreased by 6.3% and 1.7%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.