Abstract

Pollution is an integral part of global environmental change, yet the combined and interactive effects of pollution and climate on terrestrial ecosystems remain inadequately understood. This study aims to explore whether pollution alters the impacts of ambient air temperature on the population dynamics of herbivorous insects. Between 1995 and 2005, we studied populations of two closely related moths, Eriocrania semipurpurella and E. sangii, at eight sites located 1 to 64 km from a large copper‑nickel smelter in Monchegorsk, Russia. We found that pollution and temperature influence the performance of Eriocrania larvae mining in the leaves of mountain birch, Betula pubescens var. pumila, through multiple pathways. This is evident from the unconsistent changes observed in larval and frass weight, mine area, and leaf size. We found increases in both leaf quality and larval weight with decreasing pollution levels at both spatial and temporal scales and attributed these to the impact of sulphur dioxide, rather than trace elements (nickel and copper). The quality of birch leaves increased with spring (May) temperatures, enabling Eriocrania larvae to achieve greater weight while consuming less biomass. During the larval growth period (early June to early July), Eriocrania larvae increased their consumption with rising temperatures, presumably to compensate for increased metabolic expenses. Contrary to our expectations, the per capita rate of population change did not correlate with larval weight and did not vary along the pollution gradient. Nevertheless, we detected interactive effects of pollution and climate on the rate of population change. This rate decreased with rising winter temperatures in slightly polluted and unpolluted sites but remained unchanged in heavily polluted sites. We conclude that pollution disrupts mechanisms regulating the natural population dynamics of Eriocrania moths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.