Abstract

A probability density function/chemical reactor model (PDF/CRM) is applied to study how NOx emissions vary with mean combustion temperature, inlet air temperature, and pressure for different degrees of premixing quality under lean-premixed (LP) gas turbine combustor conditions. Inlet air temperatures of 550, 650 and 750 K, and combustor pressures of 10, 14 and 30 atm are examined in different chemical reactor configurations. Primary results from this study are: incomplete premixing can either increase or decrease NOx emissions, depending on the primary zone stoichiometry; an Arrhenius-type plot of NOx emissions may have promise for assessing the premixer quality of lean-premixed combustors; and decreasing premixing quality enhances the influence of inlet air temperature and pressure on NOx emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call