Abstract
Combustion instabilities in lean premixed gas turbine combustors remain a major limitation in decreasing NOx emissions. Computational Fluid Dynamics (CFD) has become an important design and analysis tool that is often used to predict thermoacoustic oscillations caused by these instabilities. Limitations to prediction accuracy are imposed by the choice of chemistry and combustion model. The focus of this study is to compare CFD calculations using Eddy Dissipation and Finite Rate Chemistry models to experimental data reported by Richards and Janus (1997) on the single-injector lean premixed DOE-NETL combustor. The computational domain consists of an annular swirl inlet, fuel injection, a can combustor, a plug for reduced flow area, and an exhaust plenum. The numerical calculations were done using a RANS solver. A 2D axisymmetric-swirl model with RANS turbulence model was employed. The Eddy Dissipation Model has become popular largely because of its robust performance. It is shown that this model does not predict combustion instabilities for the present case. On the other hand, the Finite Rate Chemistry Model is numerically stiff, but is capable of capturing the onset of combustion instabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.