Abstract
ObjectiveThe use of the transcatheter aortic valve in low-risk patients might lead to a second intervention due to the deterioration of the first 1. Understanding the implantation height is key to an effective redo transcatheter aortic valve replacement treatment. MethodsThe effects of implantation height on the performance of a balloon-expandable valve within a self-expandable valve were assessed using hemodynamic testing and particle image velocimetry. The hemodynamic performances, leaflet kinematics, and turbulent shear stresses were measured and compared. ResultsWhen a second balloon-expandable valve was positioned at varying heights relative to the first self-expandable valve, the leaflet motion of the first valve transitioned from free opening and closing to overhanging, and eventually to being entirely pinned to the stent, forming a neo-skirt. When the leaflets of the self-expandable valve could move freely, a decrease in regurgitation fraction was observed, but with an increased pressure gradient across the valve. Flow visualization indicated that the overhanging leaflets disrupted the flow, generating a higher level of turbulence. ConclusionsThis study suggests that the overhanging leaflets should be avoided, whereas the other 2 scenarios should be carefully evaluated based on an individual patient's anatomy and the cause of failure of the first valve.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have