Abstract

Abstract Shale wells are often shut-in after hydraulic fracturing is finished. Shut-in often lasts for an extended period in the perceived hope to improve the ultimate oil recovery. However, current literature does not show a strong consensus on whether shut-in will improve the ultimate oil recovery. Because of the delayed production, evaluating the benefits of shut-in in improving the ultimate oil recovery is crucial. Otherwise, shut-in would merely delay the production and harm the economic performance. This paper uses a numerical flow-geomechanical modeling approach to investigate the effect of imbibition on shut-in potentials to improve the ultimate oil recovery. This paper proposes that imbibition is one of the strongly confounding variables that cause the mixed conclusions in the related literature. The investigation methodology involves probabilistic forecasting of three reservoir realization models validated based on the same field production data. Each of the models represents different primary recovery driving mechanism, such as imbibition-dominant and compaction-dominant recovery. A parametric study is conducted to explore and identify the specific reservoir conditions in which shut-in tends to improve the shale oil recovery. Ten reservoir parameters which affect the imbibition strength are studied under different shut-in durations. Comparison among the three models quantitatively demonstrates that shut-in tends to improve the ultimate oil recovery only if the shale reservoir demonstrates imbibition-dominant recovery. A first-pass economic analysis also suggests that when the shale oil reservoirs demonstrate such an imbibition-dominant recovery, shut-in tends to not only improve the ultimate oil recovery, but also the NPV. A correlation among ultimate oil recovery, flowback efficiency, and NPV also shows that there is no strong relationship between flowback efficiency and ultimate oil recovery. This study is one of the first to emphasize the importance of quantifying the imbibition strength and its contribution in helping recover the shale oil for optimum flowback framework and shale well shut-in design after hydraulic fracturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.