Abstract

Economic production from shale oil reservoirs relies on the longevity of conductive fractures. Choke or drawdown management is believed to better preserve the fracture conductivity during the early life of the wells, which thus potentially leads to higher ultimate oil recovery. However, there is no strong consensus among the previous literature as to whether choke management can offer incremental oil recovery in the long term. Even if it can, the mechanism is not well understood, and the economic benefit can be challenged, because the choke management slows down the early oil production, which is worth the most in terms of Net Present Value (NPV). In this study, a series of coupled flow-geomechanical numerical simulations is performed to examine the effect of choke management on the ultimate oil recovery and NPV. We built multiple reservoir realization models, each of which is validated based on the same field production data from Middle Bakken shale-oil reservoirs to perform probabilistic production forecasts. The different reservoir realization models are built to assess the uncertainty in the Stimulated Reservoir Volume parameters, including natural fracture spacing, water saturation in the matrix and fracture, and formation compressibility. The different reservoir parameters lead to each model having different primary recovery driving mechanisms of oil recovery, including imbibition and compaction drive. This study quantitatively demonstrates that the choke management seems to increase both the ultimate oil recovery and NPV if the oil recovery is strongly driven by imbibition. A mechanistic discussion for this claim is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.