Abstract

Abstract The Fourier ptychographic microscopy (FPM) technique provides high-resolution images by combining a traditional imaging system, e.g. a microscope or a 4f-imaging system, with a multiplexing illumination system, e.g. an LED array and numerical image processing for enhanced image reconstruction. In order to numerically combine images that are captured under varying illumination angles, an iterative phase-retrieval algorithm is often applied. However, in practice, the performance of the FPM algorithm degrades due to the imperfections of the optical system, the image noise caused by the camera, etc. To eliminate the influence of the aberrations of the imaging system, an embedded pupil function recovery (EPRY)-FPM algorithm has been proposed [Opt. Express 22, 4960–4972 (2014)]. In this paper, we study how the performance of FPM and EPRY-FPM algorithms are affected by imperfections of the illumination system using both numerical simulations and experiments. The investigated imperfections include varying and non-uniform intensities, and wavefront aberrations. Our study shows that the aberrations of the illumination system significantly affect the performance of both FPM and EPRY-FPM algorithms. Hence, in practice, aberrations in the illumination system gain significant influence on the resulting image quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.