Abstract

Preparing ceramic materials is a meaningful way to treat and utilize industrial slags. In this work, high-performance and low-deformation industrial slag ceramics were prepared from Ti-extraction blast furnace slag and illitic clay. The phase composition and contents, microstructure, physical properties, and pyroplastic deformation of ceramic samples were investigated. With the increasing proportion of illitic clay, the main crystalline phase of ceramic samples changed from akermanite to Fe-bearing diopside. Moreover, the minor crystalline phases changed from perovskite and spinel to anorthite and titanite. The proportion of illitic clay was linearly related to the amorphous phase content. The dense microstructure comprised concentrated short-columnar and granular grains with a few isolated pores, whereas plate-like grains destroyed their denseness. An appropriate proportion of illitic clay helped to improve the physical properties, increase the high-temperature viscosity and reduce the deformation of the ceramics. The optimal proportion of illitic clay was 30%, and the prepared ceramic sample had a dense microstructure and excellent physical properties. Its bulk density was 2.82 g/cm3, bending strength was 62.17 MPa, and water absorption was 0.21%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.