Abstract

Waste incorporation into clay ceramic is a worldwide accepted recycling procedure for environmentally friendly reuse of spent industrial materials. In the present work a clay ceramic from the city of Campos dos Goytacazes, Brazil, was, for the first time, investigated with different amounts, up to 10 wt%, of a solid waste generated from the “Sulfatreat” natural gas treatment process. Both the waste and the incorporated ceramic were characterized by X-ray fluorescence and X-ray diffraction as well as vibratory sieving, gas chromatography and sedimentation method. Ceramic samples were prepared by uniaxial pressing at 18 MPa and sintered at 850°C. Physical and mechanical properties of these ceramics such as linear shrinkage, apparent density, water absorption and flexural strength were evaluated. Microstructure of the incorporated ceramics was analyzed by optical microscopy. The results showed that, within the standard deviation, the linear shrinkage and apparent density of the clay ceramic were not affected by the waste incorporation. However, the water absorption is benefitted, by decreasing above 5 wt% incorporation, while the flexural strength is impaired for any incorporated amount. Porosity and larger waste particles observed in microstructure are proposed reasons for these advantages and shortcomings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.