Abstract

As systemic delivery of O2 (QO2 = QT X CaO2) is reduced during progressive hemorrhage, the O2 extraction ratio [(CaO2 - CVO2)/CaO2] increases until a critical delivery is reached below which O2 uptake (VO2) becomes limited by delivery (O2 supply dependence). When tissue metabolic activity and O2 demand are increased or reduced, the critical QO2 required to maintain VO2 should rise or fall accordingly, unless other changes in the distribution of a limited QO2 precipitate the onset of O2 supply dependence at a different critical extraction ratio. We compared the critical QO2 and critical extraction ratio in 23 normothermic (38 degrees C), hyperthermic (41 degrees C), or hypothermic (34 decrees C) dogs during stepwise reduction in delivery produced by bleeding, as arterial O2 content was maintained. Dogs were anesthetized, paralyzed, and mechanically ventilated. Hypothermia reduced whole-body VO2 by 31%, whereas hyperthermia increased VO2 by 20%. The critical QO2 was significantly reduced during hypothermia (5.6 +/- 0.95 ml.min-1.kg-1) (P less than 0.05) and increased during hyperthermia (8.9 +/- 1.1) (P approximately equal to 0.06) compared with normothermic controls (7.4 +/- 1.2). The extraction ratio at the onset of supply dependency was significantly increased in hyperthermia (0.76 +/- 0.05) compared with hypothermia (0.65 +/- 0.10) (P less than 0.05), and the normothermic critical extraction was 0.71 +/- 0.1. These results suggest that higher body temperatures are associated with an improved ability to maintain a VO2 independent of QO2, since a higher fraction of the delivered O2 can be extracted before the onset of O2 supply dependence, relative to lower body temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call