Abstract

BackgroundHyperglycemia, which can lead to apoptosis, hypertrophy, fibrosis, and induces hyperinflammation in diabetic vascular complications due to oxidative stress. In order to elucidate the potential dual roles and regulatory signal transduction of TGF-β1 and TGF-β2 in human trabecular meshwork cells (HTMCs), we established an oxidative cell model in HTMCs using 5.5, 25, 50, and 100 mM d-glucose-supplemented media and characterized the TGF-β-related oxidative stress pathway. MethodsFurther analysis was conducted to investigate oxidative damage and protein alterations in the HTMC caused by the signal transduction. This was done through a series of qualitative cell function studies, such as cell viability/apoptosis analysis, intracellular reactive oxygen species (ROS) detection, analysis of calcium release concentration, immunoblot analysis to detect the related protein expression alteration, and analysis of cell fibrosis to study the effect of different severities of hyperglycemia. Also, we illustrated the role of TGF-β1/2 in oxidative stress-induced injury by shRNA-mediated knockdown or stimulation with recombinant human TGF-β1 protein (rhTGF-β1). ResultsResults from the protein expression analysis showed that p-JNK, p-p38, p-AKT, and related SMAD family members were upregulated in HTMCs under hyperglycemia. In the cell functional assays, HTMCs treated with rhTGFβ-1 (1 ng/mL) under hyperglycemic conditions showed higher proliferation rates and lower ROS and calcium levels. ConclusionsTo summarize, mechanistic analyses in HTMCs showed that hyperglycemia-induced oxidative stress activated TGF-β1 along with its associated pathway. General Significance: While at low concentrations, TGF-β1 protects cells from antioxidation, whereas at high concentrations, it accumulates in the extracellular matrix, causing further HTMC dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.