Abstract

A multiscale simulation of a hydrophobic polymer chain immersed in water including the supercooled region is presented. Solvent effects on the polymer conformation were taken into account via liquid–state density functional theory in which a free-energy functional model was constructed using a density response function of bulk water, determined from a molecular dynamics (MD) simulation. This approach overcomes sampling problems in simulations of high-viscosity polymer solutions in the deeply supercooled region. Isobars determined from the MD simulations of 4000 water molecules suggest a liquid–liquid transition in the deeply supercooled region. The multiscale simulation reveals that a hydrophobic polymer chain exhibits swelling upon cooling along isobars below a hypothesized second critical pressure; no remarkable swelling is observed at higher pressures. These observations agree with the behavior of a polymer chain in a Jagla solvent model that qualitatively reproduces the thermodynamics and dynamics of liquid water. A theoretical analysis of the results obtained from the multiscale simulation show that a decrease in entropy due to the swelling arises from the formation of a tetrahedral hydrogen bond network in the hydration shell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.