Abstract

Hydrogels with wet adhesion are promising interfacial adhesive materials; however, their adhesion in water, oil, or organic solvents remains a major challenge. To address this, a pressure-sensitive P(AAm-co-C18 )/PTA-Fe hydrogel is fabricated, which exhibits robust adhesion to various substrates in both aqueous solutions and oil environments. It is demonstrated that the key to wet adhesion under liquid conditions is the removal of the interfacial liquid, which can be achieved through rational molecular composition regulation. By complexing with hydrophilic polymer networks, phosphotungstic acid (PTA) is introduced into the hydrogel network as a physical cross-linker and anchor point to improve the cohesion strength and drive the migration of polymer chains. The migration and rearrangement of hydrophilic and hydrophobic polymer chains on the hydrogel surface are induced by the electrostatic interactions of Fe3+ , which create a surface with interfacial water- and oil-removing properties. By co-regulating the hydrophilic and hydrophobic polymer chains, the P(AAm-co-C18 )/PTA-Fe hydrogel is able to act as a pressure-sensitive adhesive under water and oils with adhesion strength of 92.6 and 90.0kPa, respectively. It is anticipated that this regulation strategy for polymer chains will promote the development of wet adhesion hydrogels, which can have a wide range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.