Abstract

Penta-graphene (PG) is a new theoretical two-dimensional metastable carbon allotrope composed entirely of carbon pentagons. In this paper, molecular dynamics simulations are performed to investigate the effects of the hydrogenation on the tensile and shear mechanical properties, together with the failure mechanism of PG with vacancy defects. The results show that hydrogenation can effectively tune the mechanical properties and failure mechanism of PG with vacancy defects. The defective PG (DPG) with low hydrogenation coverages exhibits obvious plastic deformation features under tensile and shear loading, and pentagon-to-polygon structural transformation is observed, while complete hydrogenation can change the failure mechanism of DPG from plastic deformation to brittle fracture. Both the tensile and shear moduli and elastic limit of DPG first decrease dramatically and then increase slowly with the increase of hydrogenation coverage, while tensile and shear strain increases almost monotonically with rising hydrogenation coverage. Complete hydrogenation can result in large enhancement of tensile and shear elastic stress limit and strain. These results may provide an important guideline for effectively tuning the mechanical properties of PG and other two-dimensional nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.