Abstract

Effects of annealing ZnO in hydrogen, oxygen, and argon have been investigated using deep level transient spectroscopy (DLTS) and Laplace-DLTS (LDLTS) measurements. Current-voltage (IV) measurements indicate a decrease in zero–bias barrier height for all the annealed samples. Conventional DLTS measurements reveal the presence of three prominent peaks in the un-annealed and annealed samples. A new peak with an activation enthalpy of 0.60 eV has been observed in the H2 annealed samples, while an estimated energy level of 0.67 eV has been observed in Ar annealed samples. O2 annealing does not introduce new peaks but causes a decrease in the concentration of the E3 peak and an increase in concentration of the E1 peak. The concentrations of all the intrinsic defects have decreased after H2 and Ar annealing; with Ar annealing giving peaks with the lowest concentrations. The E2 peak anneals out after annealing ZnO in Ar and H2 at 300 °C. From the annealing behaviour of E3, we have attributed to transition metal ion related defects, while E4 has been explained as a defect, whose formation favours oxygen deficient conditions. Laplace DLTS has successfully been employed to resolve the closely spaced energy levels in the E4 peak, splitting it into three peaks with energy levels, 0.68 eV, 0.58 eV, and 0.50 eV below the minimum of the conduction band for the Ar annealed sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call