Abstract
The effects of hydrogen evolution reaction on the deformation of zinc anode which cycles at nearly 100% depth of discharge (DOD) are studied. Results show that the generated hydrogen bubbles during charging process will gather on the surface of the middle of the anode and will cover the ZnO which is produced by the hydrolysis of Zn (OH)42− and prevent ZnO participation in the charging process. Since the charge-discharge reaction only occurs at the edges of the bubbles, the multiple dissolution and redeposition of the active material results in the formation of a massive ZnO and a very low specific discharge capacity. This finding provides a new perspective for the deformation of zinc anodes of the secondary alkaline zinc-based batteries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have