Abstract
Laminar flame speeds of premixed dimethyl ether/hydrogen/air flames were measured in a constant volume bomb at different temperatures, equivalence ratios, and hydrogen blending ratios. Results reveal that laminar flame speeds increase with an increased hydrogen blending ratio and initial temperature. The Wang model and Zhao model both perform well in predicting laminar flame speeds of the blends. Furthermore, three different models for an effective Lewis number are validated, and the volume-fraction-weighted model performs well in predicting the Markstein length. The effects of hydrogen addition on the flame speed and Markstein length of fuel blends are systematically studied. The chemical kinetic effect induced by hydrogen addition plays a dominant role in increasing the laminar flame speed in comparison to thermal and diffusive effects. In addition, there exists a critical equivalence ratio in the trend of the Markstein length. At the equivalence ratio less than the critical equivalence ratio, the Marks...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have