Abstract
Cross-flow turbines (CFTs) are arousing a growing interest to harvest both off-shore wind and tidal currents. A promising characteristic of CFTs could be a high power density in case of multi-device clusters or farms, achievable by shortening the distance between arrays as allowed by the fast energy recovery observed inside the wakes. However just few studies, only concerning symmetrical airfoils/hydrofoils, are found in the literature. By means of 3D Unsteady Reynolds Averaged Navier–Stokes (URANS) simulations and a momentum budget simplified approach, this author investigated the effects of blade profile and turbine solidity on the blade tip vortex generation and then on the mixing mechanisms supporting the reintroduction of streamwise momentum into the wake. Results indicate that: (a) pairs of counter-rotating vortices occurs in the wake, which rotation direction depends on blade profile and it is such as to generate positive vertical advection for camber-out profiles, but negative vertical advection for camber-in profiles; (b) camber-out profiles are much more effective in supporting the wake energy recovery due to the massive vertical advection induced by tip vortices; (c) for camber-in profiles the tip vortices poorly contribute to the wake recovery, that appears delayed and promoted by turbulent transport; (d) higher solidity implies stronger tip vortices and higher turbulent transport, therefore, a faster wake recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.