Abstract

A detailed wake analysis of two different turbine concepts is conducted to gain a fundamental understanding of the main energy recovery processes at play in each case. An axial-flow turbine and a cross-flow turbine are considered. Both operate near their respective optimal efficiency conditions in a uniform oncoming flow and at a Reynolds number of 107. Three-dimensional Delayed Detached-Eddy Simulations (DDES) are carried out and the time-averaged Unsteady Reynolds-averaged Navier–Stokes (URANS) equations are used as a post-processing tool in order to assess the importance of the various contributions affecting the wake recovery quantitatively. It is found that the dominant mechanism is fundamentally different between the two turbine technologies. Indeed, while the axial-flow turbine's wake is strongly influenced by an instability phenomenon leading to a significant turbulent transport, the cross-flow turbine's wake recovery is found to be much more related to the mean spanwise velocity field. As a result, unlike the axial-flow turbine's wake dynamics which is highly dependent on the turbulent characteristics of the oncoming flow, the cross-flow turbine's wake is expected to be less sensitive to these turbulent characteristics but highly dependent on the geometric characteristics of the turbine such as the turbine's aspect ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.