Abstract
Abstract. Given the availability of high-quality and high-spatial-resolution digital elevation maps (DEMs) from the United States Geological Survey's 3D Elevation Program (3DEP), derived mostly from light detection and ranging (lidar) sensors, we examined the effects of these DEMs at various spatial resolutions on the quality of flood inundation map (FIM) extents derived from a terrain index known as Height Above Nearest Drainage (HAND). We found that using these DEMs improved the quality of resulting FIM extents at around 80 % of the catchments analyzed when compared to using DEMs from the National Hydrography Dataset Plus High Resolution (NHDPlusHR) program. Additionally, we varied the spatial resolution of the 3DEP DEMs at 3, 5, 10, 15, and 20 m (meters), and the results showed no significant overall effect on FIM extent quality across resolutions. However, further analysis at coarser resolutions of 60 and 90 m revealed a significant degradation in FIM skill, highlighting the limitations of using extremely coarse-resolution DEMs. Our experiments demonstrated a significant burden in terms of the computational time required to produce HAND and related data at finer resolutions. We fit a multiple linear regression model to help explain catchment-scale variations in the four metrics employed and found that the lack of reservoir flooding or inundation upstream of river retention systems was a significant factor in our analysis. For validation, we used Interagency Flood Risk Management (InFRM) Base Level Engineering (BLE)-produced FIM extents and streamflows at the 100- and 500-year event magnitudes in a sub-region in eastern Texas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.