Abstract

Hexabromocyclododecane (HBCD) and polyethylene (PE) microplastic are ubiquitous pollutants, and knowledge about the effects of HBCD and PE pollution on soil bacterial communities remains obscure. In this study, the effects of different HBCD and PE concentrations and combined HBCD and PE exposure on the diversity, composition, and function of agricultural soil bacterial communities over 4 months were systematically examined for the first time. Generally, soil bacterial communities were influenced in both the 1-month and 4-month scenarios through HBCD and PE separately as well as combined exposure. After 4 months of exposure, PE and combined exposure significantly affected soil bacterial alpha diversity, however, low concentration of HBCD showed no apparent influence. 1-month and 4-month HBCD, PE, and combined exposure significantly influenced bacterial beta diversity. Compared with 1 month of exposure, HBCD, PE, and combined exposure demonstrated remarkable influences on soil bacteria after 4 months of exposure, especially on Nitrospirae, Elusimicrobia, Rokubacteria at the phylum level, and on MND1, Ruminiclostridium, Lysobacter, Anaeromyxobacter, Alistipes, WCHB1 at the genus level. The bacterial function analysis indicated that amino acid metabolism, carbohydrate metabolism, and membrane transport were the three predominant enriched bacterial functions after 1-month and 4-month HBCD and PE exposure. This research provides a comprehensive grasp of the effects of HBCD and PE pollution on soil microbial communities, which could have a beneficial impact on future soil pollution control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.