Abstract

Global terrestrial ecosystems are simultaneously threatened by multiple environmental pressures, with microplastics (MPs) pollution and drought possibly being the most pressing, both of which may have unanticipated effects on soil organisms. Here, we investigated the responses of diversity, composition and functions of soil bacterial community to MPs pollution (including two MPs types: polyethylene (PE) and polylactic acid (PLA); two MPs sizes: < 20 μm and <300 μm) and drought in microcosms. We found that only 20 μm PLA MPs significantly decreased soil bacterial diversity by 17.4 % and altered soil bacterial community composition, while PE MPs and 300 μm PLA MPs had no significant effects. The copiotrophic bacteria (i.e., Proteobacteria and Firmicutes) were enriched in the 20 μm PLA MPs pollution soils due to the enhanced dissolved organic carbon contents. Moreover, our results showed that the 20 μm PLA MPs also affected the potential phenotypes and functions of soil bacterial community, increasing the potentially pathogenic, stress-tolerant, containing mobile elements and forming biofilms phenotypes, and promoting membrane transport and signal transduction pathways. These results suggested that the effects of MPs on soil bacterial community varied depending on MPs types and sizes. However, drought significantly increased soil bacterial diversity by 10.3 % and affected soil bacterial community composition in the 20 μm PLA MPs pollution soils. We also found that drought inhibited the levels of potentially pathogenic, containing mobile elements and forming biofilms phenotypes in the 20 μm PLA MPs pollution soils. Taken together, these findings reveal that drought may alleviate the adverse effects of MPs pollution on soil bacterial community, which enhances our understanding of the interactive effects of multiple global change factors on agroecosystem functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call