Abstract

The effects of chemical heat release on the large-scale structure in a chemically reacting, turbulent mixing layer are investigated using direct numerical simulations. Three-dimensional, time-dependent simulations are performed for a binary, single-step chemical reaction occurring across a temporally developing turbulent mixing layer. It is found that moderate heat release slows the development of the large-scale structures and shifts their wavelengths to larger scales. The resulting entrainment of reactants is reduced, decreasing the overall chemical product formation rate. The simulation results are interpreted in terms of turbulence energetics, vorticity dynamics, and stability theory. The baroclinic torque and thermal expansion in the mixing layer produce changes in the flame vortex structure that result in more diffuse vortices than in the constant-density case, resulting in lower rotation rates of the large-scale structures. Previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers are shown to result from vorticity generation by baroclinic torques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.