Abstract

The intrauterine fluid flow due to myometrial contractions is peristaltic type motion and the myometrial contractions may occur in both symmetric and asymmetric directions. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitude, and phase due to the variation of channel width, wave amplitudes and phase differences. In this paper, we study the effects of heat and mass transfer on the peristaltic transport of magnetohydrodynamic couple stress fluid through homogeneous porous medium in a vertical asymmetric channel. The flow is investigated in the wave frame of reference moving with constant velocity with the wave. The governing equations of couple stress fluid have been simplified under the long wave length approximation. The exact solutions of the resultant governing equations have been derived for the stream function, temperature, concentration, pressure gradient, and heat transfer coefficients. The pressure difference and frictional forces at both the walls are calculated using numerical integration. The influence of diverse flow parameters on the fluid velocity, pressure gradient, temperature, concentration, pressure difference, frictional forces, heat transfer coefficients, and trapping has been discussed. The graphical results are also discussed for four different wave shapes. It is noticed that increasing of couple stresses and heat generation parameter increases the size of the trapped bolus. The heat generation parameter increases the peristaltic pumping and temperature.

Highlights

  • In recent years, the flow of non-Newtonian fluids has received much attention due to the increasing industrial, medical, and technological applications

  • The aim of the present study is to investigate the influence of heat and mass transfer on the peristaltic flow of magnetohydrodynamic couple stress fluid through homogeneous porous medium in a vertical asymmetric channel

  • The same trend is followed with the increasing of heat generation parameter β (see Figure 2(e))

Read more

Summary

Introduction

The flow of non-Newtonian fluids has received much attention due to the increasing industrial, medical, and technological applications. Various researchers have attempted diverse flow problems related to several nonNewtonian fluids and couple stress fluid is one of them. The theory of couple stress fluids originated by Stokes [1] has many biomedical, industrial, and scientific applications and was used to model synthetic fluids, polymer thickened oils, liquid crystals, animal blood, and synovial fluid. Some earlier developments in couple stress fluid theory with some basic flows can be found in the book by Stokes [2]. Few researchers have studied some couple stress fluid flows for different flow geometries [3,4,5,6,7,8].

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call