Abstract
Understanding the impact of grazing intensity on grassland production and soil fertility is of fundamental importance for grassland conservation and management. We thus compared three types of alpine steppe management by studying vegetation traits and soil properties in response to three levels of grazing pressure: permanent grazing (M1), seasonal grazing (M2), and grazing exclusion (M3) in the alpine steppe in Xainza County, Tibetan Plateau. The results showed that community biomass allocation did not support the isometric hypothesis under different grassland management types. Plants in M1 had less aboveground biomass but more belowground biomass in the top soil layer than those in M2 and M3, which was largely due to that root/shoot ratios of dominant plants in M1 were far greater than those in M2 and M3. The interramet distance and the tiller size of the dominant clonal plants were greater in M3 than in M1 and M2, while the resprouting from rhizome buds did not differ significantly among the three greezing regimes. Both soil bulk density and soil available nitrogen in M3 were greater than in M1 at the 15–30 cm soil depth (P = 0.05). Soil organic carbon and soil total nitrogen were greater in M3 than in M1 and M2 (P = 0.05). We conclude that the isometric hypothesis is not supported in this study and fencing is a helpful grassland management in terms of plant growth and soil nutrient retention in alpine steppe. The extreme cold, scarce precipitation and short growing period may be the causation of the unique plant and soil responses to different management regimes.
Highlights
Alpine grasslands make up the dominant ecosystem occupying approximately 94% of Northern Tibet [1]
Shi et al [14] found grazing exclusion to decrease soil organic carbon storage in an alpine grassland of the Tibetan Plateau, while another report suggested that seasonal grazing might enrich soil nutrients [15]
Biomass partitioning The relationship between belowground biomass (BGB) and aboveground biomass (AGB) under different grazing pressures was characterized by the linear function LogAGB = a+bLogBGB (Fig. 3)
Summary
Alpine grasslands make up the dominant ecosystem occupying approximately 94% of Northern Tibet [1]. The natural environment of the region is extremely harsh, and the alpine steppe, a fragile ecosystem, is extremely susceptible to the impacts of human activities [2]. Shi et al [14] found grazing exclusion to decrease soil organic carbon storage in an alpine grassland of the Tibetan Plateau, while another report suggested that seasonal grazing might enrich soil nutrients [15]. Such conflicting results indicate that different grazing intensities may have varying impacts on soil properties
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have