Abstract

In this paper, we explore the relativistic quantum motion of spin-zero scalar charge-free particles influenced by rainbow gravity’s (RG’s) in Bonnor–Melvin magnetic space-time, a four-dimensional solution featuring a positive cosmological constant. We solve the Klein–Gordon equation in this scenario by using two sets of rainbow function: (i) f(χ)=1(1-βχ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f(\\chi )=\\frac{1}{(1-\\beta \\,\\chi )}$$\\end{document}, h(χ)=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$h(\\chi )=1$$\\end{document} and (ii) f(χ)=1(1-βχ)=h(χ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f(\\chi )=\\frac{1}{(1-\\beta \\,\\chi )}=h(\\chi )$$\\end{document}, where 0<χ=|E|Ep≤1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$0 < \\chi \\left( =\\frac{|E|}{E_p}\\right) \\le 1$$\\end{document} with Ep\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$E_p$$\\end{document} being the Planck’s energy, E is the particle’s energy, and β\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta $$\\end{document} is the rainbow parameter. Furthermore, we study the relativistic quantum oscillator through the Klein–Gordon oscillator equation in the same Bonnor–Melvin magnetic space-time under RG effects. Employing the first pair of rainbow function, we obtain an approximate eigenvalue solution of the quantum oscillator fields. Notably, we demonstrate that the relativistic energy profile of scalar and oscillator particles are influenced by the topology of the geometry and the cosmological constant which is related with the magnetic field strength lies along the symmetry axis. Additionally, we see the impact of rainbow parameter on these approximate relativistic energy profiles in both quantum systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.