Abstract

The effects of grain size (GS) on tensile fatigue life of nanostructured NiTi superelastic shape memory alloys (SMAs) with GS=10nm, 42nm and 80nm are investigated. Macroscopic stress-controlled tensile fatigue tests, acoustic energy measurements and fracture surface observations were performed. It is shown that low-cycle fatigue life (under σmax=450MPa) of nanostructured NiTi polycrystalline SMA increases significantly when GS decreases from 80nm to 10nm. However, there is no significant effect of GS on the intermediate-cycle fatigue life (under σmax=300MPa). It is found that accumulated acoustic energy can be used to distinguish the three stages of fatigue: slow crack propagation, fast crack propagation and final fracture. Micro cracks were found on fracture surfaces of all GS specimens under intermediate-cycle fatigue and on fracture surfaces of 10nm GS specimen under low-cycle fatigue, while micro voids were found in 42nm and 80nm GS specimens under low-cycle fatigue. The results of the paper indicate that grain refinement down to nanoscale has potential in developing high fatigue resistance SMAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.