Abstract
The effects of gonadectomy on the secretion of prolactin, LH, TSH, and thyroxine were investigated. Blood serum hormone concentrations were analysed before and at 20, 120, and 180min after a single iv TRH injection in each of eight healthy intact and castrated male beagle dogs before (control) and after 4-week treatment with the dopamine-2 receptor agonist cabergoline. Under control conditions the mean prolactin, TSH, and thyroxine concentrations were similar in intact and gonadectomised dogs, and administration of TRH provoked a significant (p<0.01) increase in concentrations of the three hormones. The overall inhibitory effect of cabergoline treatment on prolactin secretion was more pronounced in the castrated dogs compared with the intact group. Cabergoline significantly suppressed the TRH-induced prolactin increase in each group (p<0.01). Corresponding TRH-stimulated TSH concentrations were not affected by cabergoline. In the gonadectomised dogs, thyroxine concentrations before and at 120 and 180min after TRH injection were significantly lower than under control conditions. LH concentrations were always higher (p<0.01) in gonadectomised dogs compared with the intact dogs, but appeared to be affected neither by TRH nor by cabergoline administration. It can thus be concluded from the results, that gonadectomy does not result in hyperprolactinaemia in male dogs, while LH concentrations are significantly increased due to missing androgen feedback. Thyroid function remains unaffected by gonadectomy. Testicular steroids appear to interact with central dopaminergic and probably other neuroendocrine mechanisms regulating the secretion of prolactin, TSH, and thyroxine. Thus, long-term dopamine-2 receptor agonistic treatment may lead to a hypothyroid condition in castrated male dogs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.