Abstract

α-Galactosyl ceramide (GalCer) is an anticancer glycolipid consisting of d-galactose and phytosphingosine-based ceramide. Although the amphiphilic structure of GalCer is expected to form self-associates in water, the self-assembly behaviors of GalCer and its derivatives have not been systematically investigated at this moment in spite of its great importance. The evaluation of morphologies and properties of the associates should open new insights into glycolipid chemistry such as the application of GalCer derivatives to a nanocarrier and the elucidation of the detailed pharmacological mechanism of GalCer. Herein, we show the synthesis of the aglycon fragment (Aglycon) of GalCer and the self-assembly behaviors of both GalCer and Aglycon in water. The critical aggregation concentrations of Aglycon and GalCer were determined using UV-vis spectral measurements at various concentrations. The transmission electron microscopy observations of the aqueous sample solutions indicated that the solution of GalCer includes vesicles, while that of Aglycon comprises giant micelles in the absence of vesicles. The vesicle formation in the solution of GalCer was also confirmed by Triton X-100-triggered dye-release experiments. To reveal the effects of glycon on the self-assembly behaviors in detail, we performed the measurements of dynamic light scattering, temperature-dependence of turbidity, differential scanning calorimetry, and wide-angle X-ray diffraction. The results clarify that the glycon moiety of GalCer has a significant role in the formation inhibition of second associates and the plasticization of the hydrophobe. This work will shed light on the other natural glycosides to evaluate the self-assembly behaviors for supramolecular and pharmacological applications in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.