Abstract
All of the presented implementations of Artificial Neural Networks (A.N.N.) have been supposed to be working in ideal conditions, however, real applications will be subject to local and global perturbations. Since 1994, we have investigated the behaviour modelling of electronic A.N.N. with global perturbation conditions. We have scrutinised the behaviour analysis of a CMOS analogue implementation of synchronous Boltzmann Machine model with both ambient temperature and electrical perturbation. In this paper we present, using our model, the analysis of these global perturbations effects on learning capability of the above mentioned CMOS based analogue implementation. Simulation and experimental results have been exposed validating our concepts.Key WordsGlobal PerturbationsNeural networkLearning capabilityModellingExperimental validation
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have