Abstract

Two processes are incorporated into a new model for transmissible prion diseases. These are general incidence for the lengthening process of infectious polymers attaching to and converting noninfectious monomers, and the joining of two polymers to form one longer polymer. The model gives rise to a system of three ordinary differential equations, which is shown to exhibit threshold behavior dependent on the value of the parameter combination giving the basic reproduction number ${\mathcal{R}_0}$. For ${\mathcal{R}_0} 1$, the system is locally asymptotic to a positive disease equilibrium. The effect of both general incidence and joining is to decrease the equilibrium value of infectious polymers and to increase the equilibrium value of normal monomers. Since the onset of disease symptoms appears to be related to the number of infectious polymers, both processes may significantly inhibit the course of the disease. With general incidence, the equ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.