Abstract
During off-state, the influence of surface-trapped electron charges induced by high-field stress near the gate electrode of AlGaN/GaN power high-electron mobility transistor devices causes a reduction in two-dimensional electron gas (2DEG) carrier density at the heterointerface. In a pulse turn-on operation, the weakened 2DEG channel results in a higher on-state conduction resistance during the transient, known as the current collapse phenomenon. The phenomenon increases the switching loss by a higher on-state resistance and prolonged turn-on transition time, thus limits the device operating frequency range. In this paper, such a phenomenon is modeled, analyzed by Sentaurus TCAD simulation, and verified by the laboratory measurement data, with the emphasis on the influence of field plates toward the current collapse. The spatial distributions of trapped electrons and excess free electrons along the AlGaN surface are modeled and analyzed to arrive at the quantitative relationships among the trapped electron density, on-resistance increase, and the electric field distribution which provide a reliable criterion for current collapse reduction. It was found that, with a proper field plate design, it is possible to achieve an improvement on transient on-state resistance and the current recovery time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have