Abstract

In Wisconsin, the use of brown midrib (BMR) corn (Zea mays) hybrids for ensiling and subsequent feeding to dairy cows is quite common. The overall milk production from cows fed silage from BMR hybrids is typically higher than those fed silage made from dual-purpose hybrids. Gibberella diseases (ear and stalk rot) caused by Gibberella zeae (anamorph; Fusarium graminearum) and the accompanying accumulation of the mycotoxin deoxynivalenol (DON) can be significant issues during field production of BMR hybrids. The work presented here aimed to understand the role of hybrid class on the distribution of F. graminearum DNA and DON in ear and stalk parts of corn for silage. An ear and stalk partitioned sample experiment was conducted on silage corn from field trials in Arlington, Wisconsin, in 2020 and 2021. The trials were arranged in a randomized complete block design in both years, including one BMR hybrid, one dual-purpose hybrid, and seven fungicide application regimes. Paired ear and stalk samples were physically separated, dried, and ground at harvest before determining the concentration of F. graminearum DNA and DON in each sample. Across both years, main effects of hybrid, treatment, and plant part were not significant (P > 0.1) on DON concentration. However, the hybrid-by-plant part interaction effect was significant (P < 0.01). Ears of the BMR hybrid accumulated the most DON, while the dual-purpose hybrid ears had the lowest DON concentration. The concentrations of DON and F. graminearum DNA were significantly (P < 0.01) and highly correlated in the ear (r = 0.73) but not in the stalk (r = 0.09, P = 0.33). These findings suggest that DON accumulation in the corn ear is a major contributor in the difference observed in total DON between the hybrid classes. Therefore, growers and researchers are encouraged to focus production and breeding on hybrids in both classes that accumulate less DON in ears, resulting in lower total DON in corn chopped for silage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call