Abstract

There have been numerous summaries of the runoff purification characteristics of bioretention cells in warm climates. However, little has been done on the effects of freeze-thaw cycles (FTCs) that frequently occur in cold regions on bioretention cell performance. Three experimental columns were constructed to simulate the operation of the bioretention cell under the FTCs. The effects of FTCs on the nutrient removal efficiency of different filling bioretention cells were analyzed. The results showed that the ammonia nitrogen (NH4+-N) concentration in the effluent of the wood chip bioretention cell under the T3 conditions (WBCF) (2.35 mg/L) was significantly higher than that of the wood chip bioretention cell operating at room temperature (WBCR) (0.62 mg/L). The effluent NH4+-N concentration of aluminum sludge bioretention cell (ABCF) (0.096 mg/L) under the FTCs was lower than that of WBCF (0.91 mg/L). Under the T3 condition, the effluent nitrate nitrogen (NO3−-N) and total nitrogen (TN) concentrations of WBCF (5.33 mg/L and 8.86 mg/L) were higher than those of WBCR (5 mg/L and 6.11 mg/L) at room temperature. Under FTCs conditions, both WBCF and ABCF had high NO3−-N removal efficiency (up to 85.87% and 24.75%) at the initial stage of thawing of the filler, and the efficiency gradually decreased with the thawing of the filler. With the increase of FTCs, the NO3−-N removal efficiency of WBCF gradually decreased (always higher than 13.6%), while the removal efficiency of ABCF fluctuated wildly (the removal efficiency was primarily negative). The total phosphorus (TP) concentration in the effluent of WBCF (0.11 mg/L) under the T3 conditions was lower than that of WBCR (0.02 mg/L) at room temperature, and the TP concentration of ABCF (0.021 mg/L) in the effluent under the FTCs was slightly lower than that of WBCF (0.031 mg/L). The FTCs have a more significant impact on removing nitrogen pollutants in runoff, but have little effect on phosphorus. Compared with aluminum sludge, wood chips are more suitable for efficient removal of nitrogen pollutants in runoff under the FTCs. The experimental conclusions can provide a reference for the construction of bioretention cells in cold regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call