Abstract
The bioaccessibility of particle-bound hydrophobic organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), and the factors influencing their re-release are crucial for assessing potential human health risks via inhalation and hand-mouth exposure. However, the mechanisms by which various factors affect the re-release of PAHs in body fluids, particularly in response to environmental changes like freeze-thaw cycles, remain unclear. To obtain a better understanding, an in vitro method was employed to investigate the re-release processes of PAHs from different soil types (ferrallitic soil and calcareous soil) in simulated body fluids (simulated lung fluid and simulated saliva) under varying freeze-thaw conditions (0, 15, and 30 cycles). The findings indicated that the bioaccessibilities of phenanthrene and pyrene decreased with the frequency of freeze-thaw cycles, which were constrained by soil nature and simulated body fluids compositions as well. Additionally, this study observed that the portion of reversible adsorption of PAHs declined after exposure to freeze-thaw cycles in a nonlinear manner, suggesting that the potential human health risk associated with PAHs could be mitigated due to the "aging effect" which occurred as PAHs became less bioaccessible over time. These results underscore the importance of considering the characteristics of pollutants, body fluids, and environmental media when conducting a precise assessment of the human health risks posed by such contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.