Abstract

The reproductive success of predators depends on abiotic environmental conditions, food abundance and population density, and food abundance, density and their interactions may respond to changes in climatic conditions. Timing of reproduction by five of the eight numerically most common prey of the sparrowhawk Accipiter nisus advanced significantly since 1971, during a period of temperature increase. There was no evidence that mean laying date or any other reproductive parameter of sparrowhawks changed consistently during the study period 1977-1997. Laying date advanced and percentage of unsuccessful female sparrowhawks decreased with beech mast in the current year, an index of food abundance for avian prey. Mean laying date of sparrowhawks was advanced in warmer springs, and although mean clutch size was not larger in warm than in cold springs, mean brood size of successful pairs and breeding success increased in such springs, showing that sparrowhawks enjoyed a fitness gain when reproducing early. The timing of sparrowhawk reproduction with respect to the peak in abundance of fledgling prey increased, from a good match between mean timing of fledging by prey and maximum demand for food by the predator in 1977, to reproduction occurring later than the peak in fledging prey availability in 1997. The size of the breeding population of sparrowhawks was not predicted by mean spring temperature, the size of the breeding population the previous year or beech mast crop. The size of the post-breeding population was predicted by size of the breeding and post-breeding population the previous year and by the proportion of unsuccessful females the current year. These findings imply that sparrowhawks did not respond to change in climate, although climate changed the timing of reproduction by the main prey species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.