Abstract

AbstractI sampled five sites above and below a dam in the central North Island of New Zealand on five to six occasions to examine the effects on benthic substrates, periphyton and invertebrate communities of (i) degree of flow regulation and (ii) flushing of sediment stored behind a dam. A series of volcanic eruptions during the course of this study provided the opportunity to investigate the effects of a period of high sediment delivery on this regulated river. The operation of the dam prior to sluicing of stored sediment appeared to have little impact on substrate size distribution or fine suspendable sediment levels. Periphyton biomass was markedly higher below than above the dam when sampling was preceded by a period of stable baseflow, but over all sampling dates biomass and inorganic content of periphyton did not appear to be related to degree of flow regulation. The taxonomic richness, biomass and density of invertebrate communities were lowest directly below, rather than above, the dam on most dates, and the site below the dam differed significantly from some of the downstream sites. However, changes in invertebrate abundance and diversity generally did not follow the expected gradient of flow regulation impacts except for the mayfly Deleatidium. Multiple regression analyses implicated substrate size and the biomass and inorganic content of periphyton as significant predictor variables for invertebrate density, biomass and taxonomic richness on sampling dates not influenced by recent sediment flushes, whereas degree of flow regulation was a significant predictor for densities of the dominant chironomid Cricotopus. The volcanic eruption led to deposition of fine silt that had passed through the dam with the residual flow and coarser sediments released during subsequent dam flushes. Flushing of stored sediment during large floods increased levels of sand and gravel directly below the dam and upstream of a large island in the middle reaches of the river, and also appeared to increase scouring of periphyton and associated invertebrates downstream. Overall, invertebrate communities in the study reach appeared to be structured more by periphyton accrual patterns, changes in substrate composition, the occurrence of large floods and natural longitudinal gradients than degree of flow regulation. These findings suggest that site‐specific and large‐scale factors can obscure generalized reach‐scale patterns expected along regulated rivers. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call