Abstract

Flavonoids are a large and diverse group of plant secondary metabolites that are mainly present as glycosides. They are often accumulated in response to abiotic stresses such as UV radiation, drought, cold and freezing. The most extensively studied function of flavonoids is their antioxidant activity although their importance as antioxidants in plants has been questioned. We therefore aim to study effects of flavonols on cellular stress tolerance that are independent of their antioxidant function. Here we investigate the effects of the glycosylated flavonols kaempferol-3-O-glucoside, kaempferol-7-O-glucoside, quercetin-3-O-glucoside and quercetin-3-O-rhamnoside on liposome stability after freezing and drying. Insertion of flavonols in lipid bilayers destabilized egg phosphatidylcholine (EPC) liposomes and to a lesser extent vesicles made from equal proportions of EPC and egg phosphatidylethanolamine (EPE) during a freeze-thaw cycle, while liposomes containing the unsaturated non-bilayer lipid 18:2 PE were either unaffected or slightly stabilized. In general, the kaempferol derivatives were more destabilizing for liposomes during freezing than the quercetin derivatives. Fourier-transform infrared spectroscopy revealed that all flavonols were localized in the interfacial region of the lipid bilayers, forming H-bonds with the lipid phosphate and carbonyl groups. The phase transition temperature of dry 16:0/18:1 PC (POPC) and POPC/EPE liposomes was decreased by 75°C and 55°C, respectively. Changes in the vibration bands attributed to the phenolic ring structures of the flavonols in the presence of liposomes provided further evidence of interactions of these molecules in particular with the interfacial region of the bilayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call