Abstract

Mullite fibrous ceramics were successfully prepared by a TBA-based gel-casting with mullite fibers as the main matrix. The effects of the fiber length and the gel-casting solid loading on the composite properties and microstructure were investigated. The 3D structure of the composite was constructed by the randomly arranged mullite fibers with the fixed crossing point, and therefore the fiber length was the most important factor influencing the microstructure of the composition. Further analyses indicate that long fibers were more suitable for the fabrication of high porosity composite. Compared with controlling the fiber length, adjusting the gel-casting solid loading was an easy method of tailoring the properties of the composite. The composite fabricated with the low solid loading and long fibers exhibited a high porosity, a low thermal conductivity, and an excellent elastic property, and can be regarded as a potential high-temperature thermal insulator applied in the industrial or aerospace thermal protection system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.