Abstract

By mimicking the extracellular matrix, nonwoven fabrics can function as scaffolds for tissue engineering application ideally, and they have been characterized regarding their fiber diameter and fiber spacing (spacing size) in vitro. We chronologically examined the in vivo effects of these fabrics on the cellular response and tissue remodeling. Four types of nonwoven polyglycolic acid fabrics (Fabric-0.7, Fabric-0.9, Fabric-3, and Fabric-16 with fiber diameters of 0.7, 0.9, 3.0, and 16.2 μm and spacing sizes of 2.0, 19.3, 19.0, and 825.4 μm, respectively) were implanted into the rat dorsum and subjected to histologic and immunohistochemical analyses from day 3 to 70. With Fabric-0.7, inflammatory cells (mainly M1 macrophages) and myofibroblasts with collagen type III accumulated mainly on the surface of the fabric and did not infiltrate inside the fabric initially, likely due to the narrow fiber space. Massive formation of collagen type I then appeared with the degradation of the fabrics, and finally, the remodeled tissue turned into a dense scar. With Fabric-0.9 and Fabric-3, inflammatory cells (predominantly M2 macrophages) were seen in all layers of the fabric initially. A mild increase in collagen type I was then seen, with few myofibroblasts, and the remodeled tissue ultimately showed a relatively little scar with an adequate thickness of the tissue induced by the fabrics. With Fabric-16, inflammatory cells (predominantly M1 macrophages) infiltrated into all layers of the fabric initially along with many myofibroblasts, especially in the hole. Lately, massive formation of collagen type I was noted due to the slow degradation of the fabric, with the shrinking of the fabric substantially, and the remodeled tissue finally turned to a dense scar. These findings suggest that optimizing the spacing size as well as the fiber diameter of artificial scaffolds may control the cellular response and tissue remodeling and facilitate favorable tissue regeneration without scar formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call