Abstract
A pot experiment was carried out on brown soil polluted by dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) to investigate the effects of biochar (BC) derived from corn straw and Fe–Mn oxide modified biochar composites (FMBC) on the bioavailability of DBP and DEHP, as well as ecosystem responses in rhizosphere soil after wheat ripening. The results indicate that the application of BC and FMBC significantly increases soil organic matter, pH, available nitrogen (AN), Olsen phosphorus, and available potassium (AK); reduces the bioavailability of DBP and DEHP; enhances the activities of dehydrogenase, urease, protease, β-glucosidase, and polyphenol oxidase; and decreases acid phosphatase activity. No changes in richness and diversity, which were measured by Illumina MiSeq sequencing, were observed following BC and FMBC application. The bacterial community structure and composition varied with DBP/DEHP concentrations and BC/FMBC additions in a nonsystematic way and no significant trends were observed. In addition, FMBC exhibited better performance in increasing soil properties and decreasing the bioavailability of DBP and DEHP compared with BC. Hence, the FMBC amendment may be a promising way of developing sustainable agricultural environmental management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.